Insights in Hierarchical Clustering of Variables for Compositional Data

Author:

Martín-Fernández Josep AntoniORCID,Donato Valentino Di,Pawlowsky-Glahn Vera,Egozcue Juan José

Abstract

AbstractR-mode hierarchical clustering is a method for forming hierarchical groups of mutually exclusive subsets of variables. This R-mode cluster method identifies interrelationships between variables which are useful for variable selection and dimension reduction. Importantly, the method is based on metric elements defined on the sample space of variables. Consequently, hierarchical clustering of compositional parts should respect the particular geometry of the simplex. In this work, the connections between concepts such as distance, cluster representative, compositional biplot, and log-ratio basis are explored within the framework of the most popular R-mode agglomerative hierarchical clustering methods. The approach is illustrated in a paleoecological study to identify groups of species sharing similar behavior.

Funder

Ministerio de Ciencia e InnovaciÓn

AgÈncia de GestiÓ d’Ajuts Universitaris i de Recerca

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Mathematics (miscellaneous)

Reference33 articles.

1. Aitchison J (1986) The statistical analysis of compositional data. In: Monographs on statistics and applied probability. Chapman and Hall Ltd. (Reprinted in 2003 by Blackburn Press)

2. Aitchison J (1997) The one-hour course in compositional data analysis or compositional data analysis is simple. In: Pawlowsky-Glahn V (ed) Proceedings of IAMG’97—The third annual conference of the International Association for Mathematical Geology. International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain pp 3–35

3. Aitchison J, Greenacre M (2002) Biplots of compositional data. J R Stat Soc Ser C (Appl Stat) 51:375–392

4. Aitchison J, Barceló-Vidal C, Martín-Fernández JA, Pawlowsky-Glahn V (2000) Logratio analysis and compositional distance. Math Geol 32(3):271–275

5. Barceló-Vidal C, Martín-Fernández JA (2016) The mathematics of compositional analysis. Aust J Stat 45(4):57–71

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3