Local Ranking of Geological Conceptual Models in Non-stationary Settings Using Multi-point Geostatistics

Author:

Selia Sangga Rima Roman,Tolosana-Delgado Raimon,Boogaart K. Gerald van den

Abstract

AbstractIn geomodeling, it is commonly accepted that the distribution of physical properties is controlled by the architecture of geological objects. However, insufficient data and the complexity of earth processes create an ill-posed problem where many architectures are plausible. Consequently, several geologists will produce different geological models for the same location. This contribution proposes a way to objectivize the ranking of those conceptual models by comparing them with hard data, both globally for the whole study region and locally for certain of its sectors. The idea is to extend the multi-point geostatistics direct sampling algorithm to be able to extract data events from different training images, representing several competing geological models, and to record the training image origin of values pasted on simulation grid cells. By tracking the frequency with which every training image is visited, we can rank the likelihood of each geological model. Histograms of the frequency of usage of each training image will provide a global ranking of the several conceptual models, while maps of these frequencies can be used to produce the local rankings. We demonstrate this method in two synthetic fluvial depositional environments where three distinct geological concepts are being proposed, with different abundances of hard data. Results indicate that the proposed method could be a useful tool in defining which geological concept dominates at a particular region and which is the frequency ranking for each training image on that region.

Funder

Helmholtz-Zentrum Dresden - Rossendorf e. V.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Mathematics (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3