Importance Weighting in Hybrid Iterative Ensemble Smoothers for Data Assimilation

Author:

Ba Yuming,Oliver Dean S.ORCID

Abstract

AbstractBecause it is generally impossible to completely characterize the uncertainty in complex model variables after assimilation of data, it is common to approximate the uncertainty by sampling from approximations of the posterior distribution for model variables. When minimization methods are used for the sampling, the weights on each of the samples depend on the magnitude of the data mismatch at the critical points and on the Jacobian of the transformation from the prior density to the sample proposal density. For standard iterative ensemble smoothers, the Jacobian is identical for all samples, and the weights depend only on the data mismatch. In this paper, a hybrid data assimilation method is proposed which makes it possible for each ensemble member to have a distinct Jacobian and for the approximation to the posterior density to be multimodal. For the proposed hybrid iterative ensemble smoother, it is necessary that a part of the mapping from the prior Gaussian random variable to the data be analytic. Examples might include analytic transformation from a latent Gaussian random variable to permeability followed by a black-box transformation from permeability to state variables in porous media flow, or a Gaussian hierarchical model for variables followed by a similar black-box transformation from permeability to state variables. In this paper, the application of weighting to both hybrid and standard iterative ensemble smoothers is investigated using a two-dimensional, two-phase flow problem in porous media with various degrees of nonlinearity. As expected, the weights in a standard iterative ensemble smoother become degenerate for problems with large amounts of data. In the examples, however, the weights for the hybrid iterative ensemble smoother were useful for improving forecast reliability.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3