Quantification of Fracture Roughness by Change Probabilities and Hurst Exponents

Author:

Gutjahr TimORCID,Hale Sina,Keller Karsten,Blum Philipp,Winter Steffen

Abstract

AbstractThe objective of the current study is to utilize an innovative method called “change probabilities” for describing fracture roughness. In order to detect and visualize anisotropy of rock joint surfaces, the roughness of one-dimensional profiles taken in different directions is quantified. The central quantifiers, change probabilities, are based on counting monotonic changes in discretizations of a profile. These probabilities, which usually vary with the scale, can be reinterpreted as scale-dependent Hurst exponents. For a large class of Gaussian stochastic processes, change probabilities are shown to be directly related to the classical Hurst exponent, which generalizes a relationship known for fractional Brownian motion. While related to this classical roughness measure, the proposed method is more generally applicable, therefore increasing the flexibility of modeling and investigating surface profiles. In particular, it allows a quick and efficient visualization and detection of roughness anisotropy and scale dependence of roughness.

Funder

Karlsruher Institut für Technologie

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Mathematics (miscellaneous)

Reference67 articles.

1. Abry P, Flandrin P, Taqqu MS, Veitch D (2000) Self-similarity and long-range dependence through the wavelet lens. In: Doukhan P, Oppenheim G, Taqqu MS (eds) Theory and applications of long-range dependence. Birkhäuser, Boston, pp 527–556

2. Amigó JM (2010) Permutation complexity in dynamical systems. Ordinal patterns, permutation entropy and all that. Springer, Dordrecht. ISBN 978-3-642-04083-2/hbk; 978-3-642-04084-9/ebook

3. Amigó JM, Keller K, Unakafova VA (2014) Ordinal symbolic analysis and its application to biomedical recordings. Philos Trans R Soc Lond Ser A 373(2034):20140091

4. Arcones MA (1994) Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann Probab 22(4):2242–2274

5. Bandis S, Lumsden A, Barton N (1983) Fundamentals of rock joint deformation. Int J Rock Mech Min Sci Geomech 20(6):249–268

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3