Robust Optimization Using the Mean Model with Bias Correction

Author:

Oliver Dean S.ORCID

Abstract

AbstractOptimization of the expected outcome for subsurface reservoir management when the properties of the subsurface model are uncertain can be costly, especially when the outcomes are predicted using a numerical reservoir flow simulator. The high cost is a consequence of the approximation of the expected outcome by the average of the outcomes from an ensemble of reservoir models, each of which may need to be numerically simulated. Instead of computing the sample average approximation of the objective function, some practitioners have computed the objective function evaluated on the “mean model,” that is, the model whose properties are the means of properties of an ensemble of model realizations. Straightforward use of the mean model without correction for bias is completely justified only when the objective function is a linear function of the uncertain properties. In this paper, we show that by choosing an appropriate transformation of the variables before computing the mean, the mean model can sometimes be used for optimization without bias correction. However, because choosing the appropriate transformation may be difficult, we develop a hierarchical bias correction method that is highly efficient for robust optimization. The bias correction method is coupled with an efficient derivative-free optimization algorithm to reduce the number of function evaluations required for optimization. The new approach is demonstrated on two numerical porous flow optimization problems. In the two-dimensional well location problem with 100 ensemble members, a good approximation of the optimal location is obtained in 10 function evaluations, and a slightly better (nearly optimal) solution using bias correction is obtained using 216 function evaluations.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3