Seifert fibering operators in 3d $$ \mathcal{N}=2 $$ theories

Author:

Closset Cyril,Kim Heeyeon,Willett Brian

Abstract

Abstract We study 3d $$ \mathcal{N}=2 $$ N = 2 supersymmetric gauge theories on closed oriented Seifert manifolds — circle bundles over an orbifold Riemann surface —, with a gauge group G given by a product of simply-connected and/or unitary Lie groups. Our main result is an exact formula for the supersymmetric partition function on any Seifert manifold, generalizing previous results on lens spaces. We explain how the result for an arbitrary Seifert geometry can be obtained by combining simple building blocks, the “fibering operators.” These operators are half-BPS line defects, whose insertion along the S 1 fiber has the effect of changing the topology of the Seifert fibration. We also point out that most supersymmetric partition functions on Seifert manifolds admit a discrete refinement, corresponding to the freedom in choosing a three-dimensional spin structure. As a strong consistency check on our result, we show that the Seifert partition functions match exactly across infrared dualities. The duality relations are given by intricate (and seemingly new) mathematical identities, which we tested numerically. Finally, we discuss in detail the supersymmetric partition function on the lens space L(p, q) b with rational squashing parameter b 2 ∈ ℚ, comparing our formalism to previous results, and explaining the relationship between the fibering operators and the three-dimensional holomorphic blocks.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A non-unitary bulk-boundary correspondence: Non-unitary Haagerup RCFTs from S-fold SCFTs;SciPost Physics;2024-08-23

2. Three-Dimensional Topological Field Theories and Nonunitary Minimal Models;Physical Review Letters;2024-03-27

3. The spindle index from localization;Journal of Physics A: Mathematical and Theoretical;2024-02-08

4. AdS3/RMT2 duality;Journal of High Energy Physics;2023-12-27

5. Magnetic charge and black hole supersymmetric quantum statistical relation;Physical Review D;2023-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3