Conserved currents and T$$ \overline{\mathrm{T}} $$s irrelevant deformations of 2D integrable field theories

Author:

Conti Riccardo,Negro Stefano,Tateo Roberto

Abstract

Abstract The T $$ \overline{\mathrm{T}} $$ T ¯ deformation of 2-dimensional QFTs is closely-related to Jackiw- Teitelboim gravity. It has been shown that, at the classical level, this perturbation induces an interaction between the stress-energy tensor and space-time and the equations of motion of the deformed theory map onto the original ones through a field-dependent coordinate transformation. At the quantum level, instead, the perturbation is induced by a modification of the original S-matrix by a specific CDD factor and, correspondingly, the quantised energy levels evolve according to a Burgers-type equation. In this paper, we point out that, in the framework of integrable field theories, there exist infinite families of perturbations characterised by a coupling between space-time and local conserved currents, labelled by the Lorentz spin. Similarly to the T $$ \overline{\mathrm{T}} $$ T ¯ case, the deformed models emerge through a field-dependent coordinate transformation involving conserved currents with higher Lorentz spin. Furthermore, using a geometric construction, we present a general method to derive the integrable hierarchy of the corresponding deformed models. The resulting expressions of the conserved currents turn out to be essential for the identification of the scattering phase factors which generate the deformations of the S-matrix, at the quantum level. Finally, the effect of the perturbations on the finite-volume spectrum is investigated using a non-linear integral equation. Exact spectral flow equations are derived, and links with previous literature, in particular on the J $$ \overline{\mathrm{T}} $$ T ¯ model, are discussed. While the classical setup is very general, the sine-Gordon model and its CFT limit are used as illustrative quantum examples. Most of the final equations and considerations are, however, of broader validity, or easily generalisable to more complicated systems.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3