Neutralino and gravitino dark matter with low reheating temperature

Author:

Roszkowski L.,Trojanowski S.,Turzynski K.

Abstract

Abstract We examine a scenario in which the reheating temperature T R after inflation is so low that it is comparable to, or lower than, the freeze out temperature of ordinary WIMPs. In this case the relic abundance of dark matter is reduced, thus relaxing the impact of the usually strong constraint coming from the requirement that the universe does not overclose. We first re-examine the dynamics of freezeout during reheating. Next we study the parameter space of the MSSM with ten free parameters, the Constrained MSSM and the singlino-dominated regions of the Next-to-MSSM. In each case we often find dramatic departures from the usually considered regime of high T R , with important implications for direct detection dark matter searches. In particular, in the MSSM we examine WIMP mass range up to about 5 TeV, and we find large regions of bino dark matter over the whole mass range, and of higgsino dark matter with mass over a similar range but starting from the ∼ 1 TeV value of the standard high T R scenario. We show that the prospects for bino detection strongly depend on T R , while the higgsino is for the most part detectable by future one-tonne detectors. The wino, which is excluded in the standard scenario, becomes allowed again if its mass is roughly above 3.5 TeV, and can also be partially detectable. In the CMSSM, the bino and higgsino mass ranges become much more constrained although detection prospects remain roughly similar. In the Next-to-MSSM we show that, at low enough T R wide ranges of singlino-dominated parameter space of the model become again cosmologically allowed, although detection prospects remain nearly hopeless. We also study the non-thermal contribution to the DM relic density from direct and cascade decays of the inflaton. Finally, in the framework of the MSSM we consider the case of a gravitino as dark matter. In this case we find strong bounds from overclosure and from Big Bang Nucleosynthesis, and derive lower limits on T R which depend on the gravitino mass and on the nature of the lightest ordinary superpartner.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference73 articles.

1. S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 21 (2010) 1 [hep-ph/9709356] [INSPIRE].

2. K.-Y. Choi, J.E. Kim and L. Roszkowski, Review of axino dark matter, J. Korean Phys. Soc. 63 (2013) 1685 [arXiv:1307.3330] [INSPIRE].

3. L. Dai, M. Kamionkowski and J. Wang, Reheating constraints to inflationary models, Phys. Rev. Lett. 113 (2014) 041302 [arXiv:1404.6704] [INSPIRE].

4. G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123] [INSPIRE].

5. N. Fornengo, A. Riotto and S. Scopel, Supersymmetric dark matter and the reheating temperature of the universe, Phys. Rev. D 67 (2003) 023514 [hep-ph/0208072] [INSPIRE].

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal dark matter with low-temperature reheating;Journal of Cosmology and Astroparticle Physics;2024-09-01

2. Unitarity bound on dark matter in low-temperature reheating scenarios;Physical Review D;2024-02-23

3. Preheating and reheating effects of the Kähler moduli inflation I model;Physical Review D;2023-11-30

4. From WIMPs to FIMPs with low reheating temperatures;Journal of Cosmology and Astroparticle Physics;2023-09-01

5. WIMPs during reheating;Journal of Cosmology and Astroparticle Physics;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3