Symmetries and charges of general relativity at null boundaries

Author:

Chandrasekaran Venkatesa,Flanagan Éanna É.,Prabhu Kartik

Abstract

Abstract We study general relativity at a null boundary using the covariant phase space formalism. We define a covariant phase space and compute the algebra of symmetries at the null boundary by considering the boundary-preserving diffeomorphisms that preserve this phase space. This algebra is the semi-direct sum of diffeomorphisms on the two sphere and a nonabelian algebra of supertranslations that has some similarities to supertranslations at null infinity. By using the general prescription developed by Wald and Zoupas, we derive the localized charges of this algebra at cross sections of the null surface as well as the associated fluxes. Our analysis is covariant and applies to general non-stationary null surfaces. We also derive the global charges that generate the symmetries for event horizons, and show that these obey the same algebra as the linearized diffeomorphisms, without any central extension. Our results show that supertranslations play an important role not just at null infinity but at all null boundaries, including non-stationary event horizons. They should facilitate further investigations of whether horizon symmetries and conservation laws in black hole spacetimes play a role in the information loss problem, as suggested by Hawking, Perry, and Strominger.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Centerless BMS charge algebra;Physical Review D;2024-08-26

2. Null infinity as a weakly isolated horizon;Physical Review D;2024-08-26

3. Null infinity and horizons: A new approach to fluxes and charges;Physical Review D;2024-08-26

4. Renormalization of conformal infinity as a stretched horizon;Classical and Quantum Gravity;2024-08-14

5. On the charge algebra of causal diamonds in three dimensional gravity;Journal of High Energy Physics;2024-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3