Manifestly finite derivation of the quantum kink mass

Author:

Evslin Jarah

Abstract

Abstract In 1974 Dashen, Hasslacher and Neveu calculated the leading quantum correction to the mass of the kink in the scalar ϕ 4 theory in 1+1 dimensions. The derivation relies on the identification of the perturbations about the kink as solutions of the Pöschl-Teller (PT) theory. They regularize the theory by placing it in a periodic box, although the kink is not itself periodic. They also require an ad hoc identification of plane wave and PT states which is difficult to interpret in the decompactified limit. We rederive the mass using the kink operator to recast this problem in terms of the PT Hamiltonian which we explicitly diagonalize using its exact eigenstates. We normal order from the beginning, rendering our theory finite so that no compactification is necessary. In our final expression for the kink mass, the form of the PT potential disappears, suggesting that our mass formula applies to other quantum solitons.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference13 articles.

1. J.-L. Gervais and B. Sakita, Extended Particles in Quantum Field Theories, Phys. Rev.D 11 (1975) 2943 [INSPIRE].

2. G. Delfino, W. Selke and A. Squarcini, Vortex mass in the three-dimensional O(2) scalar theory, Phys. Rev. Lett.122 (2019) 050602 [arXiv:1808.09276] [INSPIRE].

3. D. Davies, Quantum Solitons in any Dimension: Derrick’s Theorem v. AQFT, arXiv:1907.10616 [INSPIRE].

4. K. Hepp, The Classical Limit for Quantum Mechanical Correlation Functions, Commun. Math. Phys.35 (1974) 265 [INSPIRE].

5. S. Mandelstam, Soliton Operators for the Quantized sine-Gordon Equation, Phys. Rev.D 11 (1975) 3026 [INSPIRE].

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perturbative approach to time-dependent quantum solitons;Journal of High Energy Physics;2024-06-26

2. Gravitating kinks with asymptotically flat metrics;Europhysics Letters;2024-06-01

3. A (2+1)-dimensional domain wall at one-loop;Journal of High Energy Physics;2024-05-09

4. Reflection coefficient of a reflectionless kink;Physical Review D;2024-04-29

5. Elastic Kink-Meson scattering;Journal of High Energy Physics;2024-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3