Publisher
Springer Science and Business Media LLC
Reference9 articles.
1. Yang, X.I.A., Mittal, R.: Acceleration of the Jacobi iterative method by factors exceeding 100 using scheduled relaxation. J. Comput. Phys. 274, 695–708 (2014)
2. Babu, V.: Determination of the optimal relaxation parameters for the solution of the Neumann–Poisson problem on Uniform and Non-uniform Meshes using the Scheduled Relaxation Jacobi Method. Int. J. Adv. Eng. Sci. Appl. Math. 8, 164–173 (2016)
3. Kunz, R.F., Siebert, B.W., Cope, W.K., Foster, N.F., Antal, S.P., Ettorre, S.M.: Comput. Fluids 27, 741–768 (1998)
4. Adsuara, J.E., Cordero-Carrion, I., Cerda-Duran, P., Aloy, M.A.: Scheduled Relaxation Jacobi method: improvements and applications. J. Comput. Phys. 321, 369–413 (2016)
5. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd edn. Oxford University Press, Oxford (1985)