Author:
Al-Baqmaa Yousef A.,Al-Fatesh Ahmed S.,Ibrahim Ahmed A.,Bagabas Abdulaziz A.,Almubadde Fahad S.,Alromaeh Abdulaziz I.,Abu-Dahrieh Jehad K.,Abasaeed Ahmed E.,Fakeeha Anis H.
Abstract
AbstractCarbon dioxide reforming of methane (CRM) converts CH4 and CO2 greenhouse gases into syngas over nickel-based catalysts. We performed CRM in a tubular microreactor at 700 °C by using 5.0 wt.% NiO catalyst, supported over mixtures of γ-Al2O3 + x MgO (x = 20, 30, 63, and 70 wt.%). The process of impregnation was used to prepare the catalysts. For characterization, N2-physisorption, XRD, H2-TPR, TGA, and Raman spectroscopy techniques were employed. Among the examined catalysts, 5Ni/Al2O3 + 63%MgO was found the most active, where it showed ≅ 72% CH4 conversion, 73% CO2 conversion, and 0.82 H2/CO mole ratio over 7 h of reaction. The MgO modifier was the primary component, which favorably affected both Ni dispersion and stability, for the good interaction between NiO and γ-alumina. The mono-supported samples displayed the lowest total hydrogen consumption. In TGA, the 5Ni/Al2O3 + 63%MgO exhibited a significant weight decrease (40%), reflecting its activity. Furthermore, the Raman spectroscopy analysis showed that the crystallinity of the carbon over this catalyst was more pronounced than the others.
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献