Efficient removal of Rhodamine-B dye using sulfonated/un-sulfonated three-dimensional mesoporous carbon nitride prepared from KIT-6 template: kinetics, modelling, thermodynamic analysis

Author:

Gokcan Melisa,Koyuncu Dilsad Dolunay Eslek,Okur Mujgan

Abstract

AbstractMesoporous carbon nitride (MCN-K) was prepared using mesoporous KIT-6 material as a template and ethylenediamine and carbon tetrachloride as N and C sources, respectively. The synthesized MCN-K was treated with sulfuric acid under different experimental conditions, thus obtaining sulfonated MCN-KS adsorbents. The effects of initial solution pH, initial dye concentration, adsorbent amount, and temperature on Rhodamine-B (Rh-B) dye removal were investigated. The XRD, FT-IR, and N2 adsorption–desorption analyses confirmed that the mesoporous carbon nitride structure was successfully synthesized. The high nitrogen content (C/N molar ratio: 4.0) of the MCN-K sample was confirmed by (carbon, hydrogen, nitrogen and sulfur) CHNS elemental analysis. The XPS analysis was used to characterize the chemical states of the C, N and S atoms in the MCN-K and MCN-KS sorbents. It was found that there was not much difference between the removal percentages (93.13–89.92%) obtained in the pH range (4–12) studied. This result was attributed to the zwitter-ion form of Rh-B. The exothermic nature of the adsorption process of Rh-B on the MCN-K sorbent was determined by adsorption experiments performed at different temperatures. Adsorption capacities obtained from the Langmuir model were 185.2–104.2 mg/g in the studied temperature range. The kinetic behavior of the adsorption process was explained by the pseudo-second-order kinetic model in terms of both correlation coefficients (R2 > 0.91) and qe (35.59–190.26 mg/g) values. When the percentages of dye removal of the un-sulfonated and sulfonated samples were compared, it was found that sulfonation increased the adsorption rate considerably but did not contribute positively to the dye removal percentage.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Gazi University Research Projects Coordination Unit

Gazi University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3