High performing platinum—copper catalyst for self—breathing polymer electrolyte membrane fuel cell

Author:

Sapkota Prabal,Boyer Cyrille,Lim Sean,Aguey-Zinsou Kondo-FrancoisORCID

Abstract

AbstractPlatinum (Pt) is the most common catalyst in Polymer Electrolyte Membrane Fuel Cells due to its ability to effectively promote the oxidation of hydrogen and reduction of oxygen. However, as a noble metal, the use of Pt should be minimized. Alloying Pt with low-cost transition metals is an effective strategy to improve catalytic activity and reduce Pt use. In this context, we report on a one-step synthesis of a Platinum/Copper (PtCu) catalyst, which can be used at both the anode and the cathode of a fuel cell. Catalysts with various Cu to Pt ratios were synthesised and in particular the PtCu catalyst at a Cu to Pt ratio of 0.5 demonstrated a high activity for hydrogen oxidation and oxygen reduction, i.e. 2.4 times superior to Pt alone. This enhanced catalytic activity was confirmed in a self-breathing PEMFC with a power output of 45.16 mW cm−2, which corresponds to a 1.4-fold increase compared to Pt alone. This is a significant improvement because 40% more power was obtained with 22% less Pt. Graphical Abstract

Funder

University of Sydney

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3