Affiliation:
1. Albert-Ludwigs Universität Freiburg, Georges-Köhler Allee 52, 79110, Freiburg, Germany
2. Aalborg University, Aalborg, Denmark
Abstract
Abstract
The design of distributed, safety-critical real-time systems is challenging due to their high complexity, the potentially large number of components, and complicated requirements and environment assumptions that stem from international standards. We present a case study that shows that despite those challenges, the automated formal verification of such systems is not only possible, but practicable even in the context of small to medium-sized enterprises. We considered a wireless fire alarm system, regulated by the EN 54 standard. We performed formal requirements engineering, modeling and verification and uncovered severe design flaws that would have prevented its certification. For an improved design, we provided dependable verification results which in particular ensure that certification tests for a relevant regulation standard will be passed. In general we observe that if system tests are specified by generalized test procedures, then
verifying
that a system will pass any test following those test procedures is a cost-efficient approach to improve the product quality based on formal methods. Based on our experience, we propose an approach useful to integrate the application of formal methods to product development in SME.
Publisher
Association for Computing Machinery (ACM)
Subject
Theoretical Computer Science,Software
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献