On proving confluence modulo equivalence for Constraint Handling Rules

Author:

Christiansen Henning1,Kirkeby Maja H.1

Affiliation:

1. Research group PLIS: Programming, Logic and Intelligent Systems, Department of People and Technology, Roskilde University, Roskilde, Denmark

Abstract

Abstract Previous results on proving confluence for Constraint Handling Rules are extended in two ways in order to allow a larger and more realistic class of CHR programs to be considered confluent. Firstly, we introduce the relaxed notion of confluence modulo equivalence into the context of CHR: while confluence for a terminating program means that all alternative derivations for a query lead to the exact same final state, confluence modulo equivalence only requires the final states to be equivalent with respect to an equivalence relation tailored for the given program. Secondly, we allow non-logical built-in predicates such as var/1 and incomplete ones such as is/2, that are ignored in previous work on confluence. To this end, a new operational semantics for CHR is developed which includes such predicates. In addition, this semantics differs from earlier approaches by its simplicity without loss of generality, and it may also be recommended for future studies of CHR. For the purely logical subset of CHR, proofs can be expressed in first-order logic, that we show is not sufficient in the present case. We have introduced a formal meta-language that allows reasoning about abstract states and derivations with meta-level restrictions that reflect the non-logical and incomplete predicates. This language represents subproofs as diagrams, which facilitates a systematic enumeration of proof cases, pointing forward to a mechanical support for such proofs. The Project is supported by The DanishCouncil for IndependentResearch, Natural Sciences, Grant No. DFF4181-00442. The second author’s contribution received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 318337, ENTRA—Whole-Systems Energy Transparency.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3