Atomic actions, and their refinements to isolated protocols

Author:

Banach Richard1,Schellhorn Gerhard2

Affiliation:

1. School of Computer Science, University of Manchester, Oxford Road, M13 9PL, Manchester, UK

2. Lehrstuhl für Softwaretechnik und Programmiersprachen, Universität Augsburg, 86135, Augsburg, Germany

Abstract

Abstract Inspired by the properties of the refinement development of the Mondex Electronic Purse, we view an isolated atomic action as a family of transitions with a common before-state, and different after-states corresponding to different possible outcomes when the action is attempted. We view a protocol for an atomic action as a computation DAG, each path of which achieves in several steps one of the outcomes of the atomic action. We show that in this picture, the protocol can be viewed as a relational refinement of the atomic action in a number of ways. Firstly, it yields a ‘big diagram’ simulation à la ASM. Secondly, it yields a ‘small diagram’ simulation, in which the atomic action is synchronised with an individual step along each path through the protocol, and all the other steps of the path simulate skip. We show that provided each path through the protocol contains one step synchronised with the atomic action, the choice of synchronisation point can be made freely. We describe the relationship between such synchronisations and forward and backward simulations. We relate this theory to serialisations of system runs containing multiple interleaved transactions, showing how the clean picture of the refinement of an isolated atomic action to an isolated protocol becomes obscured by the details of the interleaving. In effect, the fact that protocols are typically executed by a number of co-operating agents, not all of which embark on executing the protocol at the same moment, results in ‘ragged starts’ and ‘ragged ends’ to protocol instantiations, leading to potential overlaps between unrelated protocol instances that the theory must handle. We show how existing Mondex refinements embody the ideas developed, and describe a mechanical verification of the results presented.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science,Software

Reference42 articles.

1. Abrial J-R Hallerstede S (2006) Refinement decomposition and instantiation of discrete models: application to event-B. Fundamenta Informaticae vol 21

2. Clearsy. b4free tool home page. http://www.b4free.com

3. Concurrency and atomicity

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Verification-Led Smart Contracts;Financial Cryptography and Data Security;2020

2. Retrenchment and refinement interworking: the tower theorems;Mathematical Structures in Computer Science;2014-12-02

3. A Sound and Complete Proof Technique for Linearizability of Concurrent Data Structures;ACM Transactions on Computational Logic;2014-08

4. Introducing extra operations in refinement;Formal Aspects of Computing;2014-03

5. Discovery of invariants through automated theory formation;Formal Aspects of Computing;2014-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3