Invariant diagrams with data refinement

Author:

Preoteasa Viorel1,Back Ralph-Johan1

Affiliation:

1. Department of Information Technologies, Åbo Akademi University, Joukahaisenkatu 3-5 A, 20520, Turku, Finland

Abstract

Abstract Invariant based programming is an approach where we start to construct a program by first identifying the basic situations (pre- and post-conditions as well as invariants) that could arise during the execution of the algorithm. These situations are identified before any code is written. After that, we identify the transitions between the situations, which will give us the flow of control in the program. Data refinement is a technique of building correct programs working on concrete data structures as refinements of more abstract programs working on abstract data types. We study in this paper data refinement for invariant based programs and we apply it to the construction of the classical Deutsch–Schorr–Waite graph marking algorithm. Our results are formalized and mechanically proved in the Isabelle/HOL theorem prover.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science,Software

Reference25 articles.

1. Back RJ (1980) Correctness preserving program refinements: proof theory and applications. In: Mathematical centre tracts vol 131. Mathematisch Centrum Amsterdam

2. Back RJ (1980) Semantic correctness of invariant based programs. In: International workshop on program construction Chateau de Bonas France

3. Back RJ (1983) Invariant based programs and their correctness. In: Biermann W Guiho G Kodratoff Y (eds) Automatic program construction techniques. MacMillan Publishing Company pp 223–242

4. Back RJ (2008) Invariant based programming: basic approach and teaching experience. Formal Aspects of Computing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Refinement algebra with dual operator;Science of Computer Programming;2014-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3