Deductive verification of alternating systems

Author:

Slanina Matteo1,Sipma Henny B.2,Manna Zohar2

Affiliation:

1. Google Inc., 1600 Amphitheatre Pkwy, 94043, Mountain View, CA, USA

2. Computer Science Department, Stanford University, 353 Serra Mall, 94305-9045, Stanford, CA, USA

Abstract

Abstract Alternating systems are models of computer programs whose behavior is governed by the actions of multiple agents with, potentially, different goals. Examples include control systems, resource schedulers, security protocols, auctions and election mechanisms. Proving properties about such systems has emerged as an important new area of study in formal verification, with the development of logical frameworks such as the alternating temporal logic ATL *. Techniques for model checking ATL * over finite-state systems have been well studied, but many important systems are infinite-state and thus their verification requires, either explicitly or implicitly, some form of deductive reasoning. This paper presents a theoretical framework for the analysis of alternating infinite-state systems. It describes models of computation, of various degrees of generality, and alternating-time logics such as ATL * and its variations. It then develops a proof system that allows to prove arbitrary ATL * properties over these infinite-state models. The proof system is shown to be complete relative to validities in the weakest possible assertion language. The paper then derives auxiliary proof rules and verification diagrams techniques and applies them to security protocols, deriving a new formal proof of fairness of a multi-party contract signing protocol where the model of the protocol and of the properties contains both game-theoretic and infinite-state (parameterized) aspects.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Unified Model Checking Approach of APTL;Structured Object-Oriented Formal Language and Method;2021

2. Zohar Manna (1939–2018);Formal Aspects of Computing;2019-12

3. Probabilistic CTL $$^{*}$$ : The Deductive Way;Tools and Algorithms for the Construction and Analysis of Systems;2016

4. Deductive control synthesis for alternating-time logics;Proceedings of the 14th International Conference on Embedded Software - EMSOFT '14;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3