A semantics comparison workbench for a concurrent, asynchronous, distributed programming language

Author:

Corrodi Claudio1,Heußner Alexander2,Poskitt Christopher M.3ORCID

Affiliation:

1. Software Composition Group, University of Bern, Bern, Switzerland

2. Software Technologies Research Group, University of Bamberg, Bamberg, Germany

3. Singapore University of Technology and Design, Singapore, Singapore

Abstract

Abstract A number of high-level languages and libraries have been proposed that offer novel and simple to use abstractions for concurrent, asynchronous, and distributed programming. The execution models that realise them, however, often change over time—whether to improve performance, or to extend them to new language features—potentially affecting behavioural and safety properties of existing programs. This is exemplified by Scoop , a message-passing approach to concurrent object-oriented programming that has seen multiple changes proposed and implemented, with demonstrable consequences for an idiomatic usage of its core abstraction. We propose a semantics comparison workbench for Scoop with fully and semi-automatic tools for analysing and comparing the state spaces of programs with respect to different execution models or semantics. We demonstrate its use in checking the consistency of properties across semantics by applying it to a set of representative programs, and highlighting a deadlock-related discrepancy between the principal execution models of Scoop . Furthermore, we demonstrate the extensibility of the workbench by generalising the formalisation of an execution model to support recently proposed extensions for distributed programming. Our workbench is based on a modular and parameterisable graph transformation semantics implemented in the Groove tool. We discuss how graph transformations are leveraged to atomically model intricate language abstractions, how the visual yet algebraic nature of the model can be used to ascertain soundness, and highlight how the approach could be applied to similar languages.

Funder

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monadic second-order incorrectness logic for GP 2;Journal of Logical and Algebraic Methods in Programming;2023-01

2. Incorrectness Logic for Graph Programs;Graph Transformation;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3