Affiliation:
1. Safe and secure cognitive systems, DFKI GmbH, Bremen, Germany
2. Department of Computer Science, University of Bremen, Bremen, Germany
Abstract
Abstract
For a number of programming languages, among them Eiffel, C, Java, and Ruby, Hoare-style logics and dynamic logics have been developed. In these logics, pre- and postconditions are typically formulated using potentially effectful programs. In order to ensure that these pre- and postconditions behave like logical formulae (that is, enjoy some kind of referential transparency), a notion of purity is needed. Here, we introduce a generic framework for reasoning about purity and effects. Effects are modelled abstractly and axiomatically, using Moggi’s idea of encapsulation of effects as monads. We introduce a dynamic logic (from which, as usual, a Hoare logic can be derived) whose logical formulae are pure programs in a strong sense. We formulate a set of proof rules for this logic, and prove it to be complete with respect to a categorical semantics. Using dynamic logic, we then develop a relaxed notion of purity which allows for observationally neutral effects such writing on newly allocated memory.
Publisher
Association for Computing Machinery (ACM)
Subject
Theoretical Computer Science,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献