Language Family Engineering with Product Lines of Multi-level Models

Author:

de Lara JuanORCID,Guerra Esther

Abstract

AbstractModelling is an essential activity in software engineering. It typically involves two meta-levels: one includes meta-models that describe modelling languages, and the other contains models built by instantiating those meta-models. Multi-level modelling generalizes this approach by allowing models to span an arbitrary number of meta-levels. A scenario that profits from multi-level modelling is the definition of language families that can be specialized (e.g., for different domains) by successive refinements at subsequent meta-levels, hence promoting language reuse. This enables an open set of variability options given by all possible specializations of the language family. However, multi-level modelling lacks the ability to express closed variability regarding the availability of language primitives or the possibility to opt between alternative primitive realizations. This limits the reuse opportunities of a language family. To improve this situation, we propose a novel combination of product lines with multi-level modelling to cover both open and closed variability. Our proposal is backed by a formal theory that guarantees correctness, enables top-down and bottom-up language variability design, and is implemented atop the MetaDepth multi-level modelling tool.

Funder

Universidad Autónoma de Madrid

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. iCoLa+: An extensible meta-language with support for exploratory language development;Journal of Systems and Software;2024-01

2. Systematic Component-Oriented Language Reuse;2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C);2023-10-01

3. Modular language product lines;Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems;2022-10-23

4. Model-Driven Engineering for Complex Event Processing: A Survey.;The Journal of Object Technology;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3