Threaded behavior protocols

Author:

Poch Tomáš1,Šerý Ondřej1,Plášil František1,Kofroň Jan1

Affiliation:

1. Faculty of Mathematics and Physics, Charles University Prague, Malostranské náměstí 25, 118 00, Prague 1, Czech Republic

Abstract

Abstract Component-based development is a well-established methodology of software development. Nevertheless, some of the benefits that the component based development offers are often neglected. One of them is modeling and subsequent analysis of component behavior, which can help establish correctness guarantees, such as absence of composition errors and safety of component updates. We believe that application of component behavior modeling in practice is limited due to huge differences between the behavior modeling languages (e.g., process algebras) and the common implementation languages (e.g., Java). As a result, many concepts of the implementation languages are either very different or completely missing in the behavior modeling languages. As an example, even though behavior modeling languages are practical for modeling and analysis of various message-based protocols, they are not well suited for modeling current component applications, where thread-based parallelism, lock-based synchronization, and nested method calls are the essential building blocks. With this in mind, we propose a new behavior modeling language for software components, Threaded Behavior Protocols (TBP). At the model level, TBP provides developers with the concepts known from the implementation languages and essential to most component applications. In addition, the theoretical framework of TBP provides a notion of correctness based on absence of communication errors and a refinement relation to verify correctness of hierarchical components. The main asset of TBP formalism is that it links together the notion of threads as used in imperative object oriented languages and the notion of refinement. For instance, this allows reasoning about hierarchical components composed of primitive components implemented in Java without the need of bridging abstractions and simplifications enforced by the modeling languages.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science,Software

Reference31 articles.

1. A Process Algebraic Approach to Software Architecture Design

2. Adamek J Bures T Jezek P Kofron J Mencl V Parizek P Plasil F (2006) Component reliability extensions for fractal component model. http://kraken.cs.cas.cz/ft/public/public_index.phtml

3. Interface automata

4. de Alfaro L Henzinger TA (2001) Interface theories for component-based design. In: EMSOFT ’01: Proceedings of the first international workshop on embedded software. London UK Springer Berlin pp 148–165

5. Allen RJ (1997) A formal approach to software architecture. PhD thesis CMU

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Behavioural semantics for asynchronous components;Journal of Logical and Algebraic Methods in Programming;2017-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3