Finding suitable variability abstractions for lifted analysis

Author:

Dimovski Aleksandar S.1ORCID,Brabrand Claus2,Wąsowski Andrzej2

Affiliation:

1. Mother Teresa University, 12 Udarna Brigada 2a, 1000, Skopje, Macedonia

2. IT University of Copenhagen, Rued Langgaards Vej 7, 2300, Copenhagen, Denmark

Abstract

Abstract Many software systems are today variational: they are built as program families or Software Product Lines. They can produce a potentially huge number of related programs, known as products or variants, by selecting suitable configuration options (features) at compile time. Many such program families are safety critical, yet the appropriate tools only rarely are able to analyze them effeciently. Researchers have addressed this problem by designing specialized variability-aware static (dataflow) analyses, which allow analyzing all variants of the family, simultaneously, in a single run without generating any of the variants explicitly. They are also known as lifted or family-based analyses. They take as input the common code base, which encodes all variants of a program family, and produce precise analysis results corresponding to all variants. These analyses scale much better than “brute force” approach, where all individual variants are analyzed in isolation, one-by-one, using off-the-shelf single-program analyzers. Nevertheless, the computational cost of lifted analyses still greatly depends on the number of features and variants (which is often huge). For families with a large number of features and variants, the lifted analyses may be too costly or even infeasible. In order to speed up lifted analyses and make them computationally cheaper, variability abstractions which simplify variability away from program families and lifted analyses have been introduced. However, the space of possible variability abstractions is still intractably large to search naively, with most abstractions being either too imprecise or too costly. We introduce here a method to efficiently find suitable variability abstractions from a large space of possible abstractions for a lifted static analysis. The main idea is to use a pre-analysis to estimate the impact of variability-specific parts of the program family on the analysis’s precision. The pre-analysis is fully variability-aware while it aggressively abstracts the other semantics aspects. Then we use the pre-analysis results to find out when and where the subsequent abstract lifted analysis should turn off or on its variability-awareness. The abstraction constructed in this way is effective in discarding variability-specific program details that are irrelevant for showing the analysis’s ultimate goal. We formalize this approach and we illustrate its effectiveness on several Java case studies. The evaluation shows that our approach which consists of running a pre-analysis followed by a subsequent abstract lifted analysis achieves competitive the precision-speed tradeoff compared to the standard lifted analysis.

Funder

The Danish Council for Independent Research under a Sapere Aude project

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault localization by abstract interpretation and its applications;Journal of Computer Languages;2024-08

2. Family-based model checking of fMultiLTL properties;Proceedings of the 27th ACM International Systems and Software Product Line Conference - Volume A;2023-08-28

3. Quantitative Program Sketching using Lifted Static Analysis;Fundamental Approaches to Software Engineering;2022

4. Several lifted abstract domains for static analysis of numerical program families;Science of Computer Programming;2022-01

5. A Formal Framework of Software Product Line Analyses;ACM Transactions on Software Engineering and Methodology;2021-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3