Affiliation:
1. Eindhoven University of Technology, Eindhoven, The Netherlands
Abstract
Abstract
In Model Driven Software Engineering, models and model transformations are the primary artifacts when developing a software system. In such a workflow, model transformations are used to incrementally transform initial abstract models into concrete models containing all relevant system details. Over the years, various formal methods have been proposed and further developed to determine the functional correctness of models of concurrent systems. However, the formal verification of model transformations has so far not received as much attention. In this article, we propose a formal verification technique to determine that formalisations of such transformations in the form of rule systems are guaranteed to preserve functional properties, regardless of the models they are applied on. This work extends our earlier work in various ways. Compared to our earlier approaches, the current technique involves only up to
n
individual checks, with
n
the number of rules in the rule system, whereas previously, up to 2
n
− 1 checks were required. Furthermore, a full correctness proof for the technique is presented, based on a formal proof conducted with the Coq proof assistant. Finally, we report on two sets of conducted experiments. In the first set, we compared traditional model checking with transformation verification, and in the second set, we compared the verification technique presented in this article with the previous version.
Publisher
Association for Computing Machinery (ACM)
Subject
Theoretical Computer Science,Software
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献