Analysing neurobiological models using communicating automata

Author:

Su Li12,Gomez Rodolfo3,Bowman Howard34

Affiliation:

1. Department of Psychiatry, University of Cambridge, Level E4, Box 189, Addenbrooke’s Hospital, Hills Road, CB2 0QQ, Cambridge, UK

2. Department of Psychology, University of Cambridge, Cambridge, UK

3. Centre for Cognitive Neuroscience and Cognitive Systems, School of Computing, University of Kent, Canterbury, UK

4. School of Psychology, University of Birmingham, Birmingham, UK

Abstract

Abstract Two important issues in computational modelling in cognitive neuroscience are: first, how to formally describe neuronal networks (i.e. biologically plausible models of the central nervous system), and second, how to analyse complex models, in particular, their dynamics and capacity to learn. We make progress towards these goals by presenting a communicating automata perspective on neuronal networks. Specifically, we describe neuronal networks and their biological mechanisms using Data-rich Communicating Automata, which extend classic automata theory with rich data types and communication. We use two case studies to illustrate our approach. In the first case study, we model a number of learning frameworks, which vary in respect of their biological detail, for instance the Backpropagation (BP) and the Generalized Recirculation (GeneRec) learning algorithms. We then used the SPIN model checker to investigate a number of behavioral properties of the neural learning algorithms. SPIN is a well-known model checker for reactive distributed systems, which has been successfully applied to many non-trivial problems. The verification results show that the biologically plausible GeneRec learning is less stable than BP learning. In the second case study, we presented a large scale (cognitive-level) neuronal network, which models an attentional spotlight mechanism in the visual system. A set of properties of this model was verified using Uppaal, a popular real-time model checker. The results show that the asynchronous processing supported by concurrency theory is not only a more biologically plausible way to model neural systems, but also provides a better performance in cognitive modelling of the brain than conventional artificial neural networks that use synchronous updates. Finally, we compared our approach with several other related theories that apply formal methods to cognitive modelling. In addition, the practical implications of the approach are discussed in the context of neuronal network based controllers.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3