A tale of two graph models: a case study in wireless sensor networks

Author:

Archibald BlairORCID,Kulcsár Géza,Sevegnani Michele

Abstract

AbstractDesigning and reasoning about complex systems such as wireless sensor networks is hard due to highly dynamic environments: sensors are heterogeneous, battery-powered, and mobile. While formal modelling can provide rigorous mechanisms for design/reasoning, they are often viewed as difficult to use. Graph rewrite-based modelling techniques increase usability by providing an intuitive, flexible, and diagrammatic form of modelling in which graph-like structures express relationships between entities while rewriting mechanisms allow model evolution. Two major graph-based formalisms are Graph Transformation Systems (GTS) and Bigraphical Reactive Systems (BRS). While both use similar underlying structures, how they are employed in modelling is quite different. To gain a deeper understanding of GTS and BRS, and to guide future modelling, theory, and tool development, in this experience report we compare the practical modelling abilities and style of GTS and BRS when applied to topology control in WSNs. To show the value of the models, we describe how analysis may be performed in both formalisms. A comparison of the approaches shows that although the two formalisms are different, from both a theoretical and practical modelling standpoint, they are each successful in modelling topology control in WSNs. We found that GTS, while featuring a small set of entities and transformation rules, relied on entity attributes, rule application based on attribute/variable side-conditions, and imperative control flow units. BRS on the other hand, required a larger number of entities in order to both encode attributes directly in the model (via nesting) and provide tagging functionality that, when coupled with rule priorities, implements control flow. There remains promising research mapping techniques between the formalisms to further enable flexible and expressive modelling.

Funder

Engineering and Physical Sciences Research Council

Deutsche Forschungsgemeinschaft

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3