Compositional reasoning about active objects with shared futures

Author:

Din Crystal Chang1,Owe Olaf2

Affiliation:

1. Department of Computer Science, Technische Universität Darmstadt, Darmstadt, Germany

2. Department of Informatics, University of Oslo, Oslo, Norway

Abstract

Abstract Distributed and concurrent object-oriented systems are difficult to analyze due to the complexity of their concurrency, communication, and synchronization mechanisms. The future mechanism extends the traditional method call communication model by facilitating sharing of references to futures. By assigning method call result values to futures, third party objects may pick up these values. This may reduce the time spent waiting for replies in a distributed environment. However, futures add a level of complexity to program analysis, as the program semantics becomes more involved. This paper presents a model for asynchronously communicating objects, where return values from method calls are handled by futures. The model facilitates invariant specifications over the locally visible communication history of each object. Compositional reasoning is supported and proved sound, as each object may be specified and verified independently of its environment. A kernel object-oriented language with futures inspired by the ABS modeling language is considered. A compositional proof system for this language is presented, formulated within dynamic logic.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science,Software

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Locally Abstract, Globally Concrete Semantics of Concurrent Programming Languages;ACM Transactions on Programming Languages and Systems;2024-03-29

2. Type-Based Verification of Delegated Control in Hybrid Systems;Lecture Notes in Computer Science;2024

3. Context-Aware Trace Contracts;Lecture Notes in Computer Science;2024

4. Deductive verification of active objects with Crowbar;Science of Computer Programming;2023-03

5. Runtime Enforcement Using Knowledge Bases;Fundamental Approaches to Software Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3