Comprehensive Systems: A formal foundation for Multi-Model Consistency Management

Author:

Stünkel PatrickORCID,König HaraldORCID,Lamo YngveORCID,Rutle AdrianORCID

Abstract

AbstractModel management is a central activity in Software Engineering. The most challenging aspect of model management is to keep inter-related models consistent with each other while they evolve. As a consequence, there is a lot of scientific activity in this area, which has produced an extensive body of knowledge, methods, results and tools. The majority of these approaches, however, are limited to binary inter-model relations; i.e. the synchronisation of exactly two models. Yet, not every multi-ary relation can be factored into a family of binary relations. In this paper, we propose and investigate a novel comprehensive system construction, which is able to represent multi-ary relations among multiple models in an integrated manner and thus serves as a formal foundation for artefacts used in consistency management activities involving multiple models. The construction is based on the definition of partial commonalities among a set of models using the same language, which is used to denote the (local) models. The main theoretical results of this paper are proofs of the facts that comprehensive systems are an admissible environment for (i) applying formal means of consistency verification (diagrammatic predicate framework), (ii) performing algebraic graph transformation (weak adhesive HLR category), and (iii) that they generalise the underlying setting of graph diagrams and triple graph grammars.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Evolving Secured Multi-Model Systems with Model Federation;2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C);2023-10-01

2. A model-driven approach to adopt good practices for agile process configuration and certification;Computer Standards & Interfaces;2023-08

3. Behavioral consistency in multi-modeling.;The Journal of Object Technology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3