Process algebraic modelling of attentional capture and human electrophysiology in interactive systems

Author:

Su Li12,Bowman Howard1,Barnard Philip3,Wyble Brad4

Affiliation:

1. Centre for Cognitive Neuroscience and Cognitive Systems, University of Kent, Canterbury, UK

2. Section of Cognitive Neuropsychiatry, Department of Psychological Medicine, Institute of Psychiatry at King’s College London, Box P068, De Crespigny Park, SE5 8AF, London, UK

3. MRC Cognition and Brain Sciences Unit, Cambridge, UK

4. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

Abstract Previous research has developed a formal methods-based (cognitive-level) model of the Interacting Cognitive Subsystems central engine, with which we have simulated attentional capture in the context of Barnard’s key-distractor Attentional Blink task. This model captures core aspects of the allocation of human attention over time and as such should be applicable across a range of practical settings when human attentional limitations come into play. In addition, this model simulates human electrophysiological data, such as electroencephalogram recordings, which can be compared to real electrophysiological data recorded from human participants. We have used this model to evaluate the performance trade-offs that would arise from varying key parameters and applying either a constructive or a reactive approach to improving interactive systems in a stimulus rich environment. A strength of formal methods is that they are abstract and the resulting specifications of the operator are general purpose, ensuring that our findings are broadly applicable. Thus, we argue that new modelling techniques from computer science can also be employed in computational modelling of the mind. These would complement existing techniques, being specifically targeted at psychological level modelling, in which it is advantageous to directly represent the distribution of control.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formal Methods for Human-Computer Interaction;Texts in Theoretical Computer Science. An EATCS Series;2022

2. Is CADP an Applicable Formal Method?;Electronic Proceedings in Theoretical Computer Science;2021-11-16

3. Interdisciplinary Aspects of Cognition;Software Engineering and Formal Methods;2020

4. Modelling the User;Human–Computer Interaction Series;2017

5. Modelling and analysing neural networks using a hybrid process algebra;Theoretical Computer Science;2016-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3