Deciding probabilistic automata weak bisimulation: theory and practice

Author:

Ferrer Fioriti Luis María1,Hashemi Vahid12,Hermanns Holger1,Turrini Andrea3

Affiliation:

1. Department of Computer Science, Saarland University, Saarbrücken, Germany

2. Max Planck Institute for Informatics, Saarbrücken, Germany

3. State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

Abstract

Abstract Weak probabilistic bisimulation on probabilistic automata can be decided by an algorithm that needs to check a polynomial number of linear programming problems encoding weak transitions. It is hence of polynomial complexity. This paper discusses the specific complexity class of the weak probabilistic bisimulation problem, and it considers several practical algorithms and linear programming problem transformations that enable an efficient solution. We then discuss two different implementations of a probabilistic automata weak probabilistic bisimulation minimizer, one of them employing SAT modulo linear arithmetic as the solver technology. Empirical results demonstrate the effectiveness of the minimization approach on standard benchmarks, also highlighting the benefits of compositional minimization.

Funder

Sino-German Center (CDZ)

DFG/NWO

DFG

Seventh Framework Programme

Chinese Academy of Sciences

National Natural Science Foundation of China

CAS/SAFEA

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Cancellation Law for Probabilistic Processes;Electronic Proceedings in Theoretical Computer Science;2023-09-14

2. On divergence-sensitive weak probabilistic bisimilarity;Information and Computation;2023-06

3. A three-valued model abstraction framework for PCTL* stochastic model checking;Automated Software Engineering;2022-03-02

4. Measurement and Computation of Profile Similarity of Workflow Nets Based on Behavioral Relation Matrix;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2020-10

5. A Complete Axiomatization of Branching Bisimilarity for a Simple Process Language with Probabilistic Choice;The Art of Modelling Computational Systems: A Journey from Logic and Concurrency to Security and Privacy;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3