Intraoperative dynamics of workflow disruptions and surgeons' technical performance failures: insights from a simulated operating room

Author:

Koch AmelieORCID,Kullmann Aljoscha,Stefan PhilippORCID,Weinmann TobiasORCID,Baumbach Sebastian F.,Lazarovici Marc,Weigl MatthiasORCID

Abstract

Abstract Introduction Flow disruptions (FD) in the operating room (OR) have been found to adversely affect the levels of stress and cognitive workload of the surgical team. It has been concluded that frequent disruptions also lead to impaired technical performance and subsequently pose a risk to patient safety. However, respective studies are scarce. We therefore aimed to determine if surgical performance failures increase after disruptive events during a complete surgical intervention. Methods We set up a mixed-reality-based OR simulation study within a full-team scenario. Eleven orthopaedic surgeons performed a vertebroplasty procedure from incision to closure. Simulations were audio- and videotaped and key surgical instrument movements were automatically tracked to determine performance failures, i.e. injury of critical tissue. Flow disruptions were identified through retrospective video observation and evaluated according to duration, severity, source, and initiation. We applied a multilevel binary logistic regression model to determine the relationship between FDs and technical performance failures. For this purpose, we compared FDs in one-minute intervals before performance failures with intervals without subsequent performance failures. Results Average simulation duration was 30:02 min (SD = 10:48 min). In 11 simulated cases, 114 flow disruption events were observed with a mean hourly rate of 20.4 (SD = 5.6) and substantial variation across FD sources. Overall, 53 performance failures were recorded. We observed no relationship between FDs and likelihood of immediate performance failures: Adjusted odds ratio = 1.03 (95% CI 0.46–2.30). Likewise, no evidence could be found for different source types of FDs. Conclusion Our study advances previous methodological approaches through the utilisation of a mixed-reality simulation environment, automated surgical performance assessments, and expert-rated observations of FD events. Our data do not support the common assumption that FDs adversely affect technical performance. Yet, future studies should focus on the determining factors, mechanisms, and dynamics underlying our findings.

Funder

Munich Centre for Health Sciences

Deutsche Forschungsgemeinschaft

Ludwig-Maximilians-Universität München

Publisher

Springer Science and Business Media LLC

Subject

Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3