Soft hybrid intrinsically motile robot for wireless small bowel enteroscopy

Author:

Khan HamzaORCID,Alijani Afshin,Mowat Craig,Cuschieri Alfred

Abstract

Abstract Background Difficulties in establishing diagnosis of small bowel (SB) disorders, prevented their effective treatment. This problem was largely resolved by wireless capsule endoscopy (WCE), which has since become the first line investigation for suspected SB disorders. Several types of WCE pills are now used in clinical practice, despite their limitations and complications. WCE pills are large, rigid and immotile capsules. When swallowed, they provide SB enteroscopy downloaded to a data logger carried by the patient. Most of the complications of WCEs result from lack of intrinsic locomotion: incomplete examination, capsule retention and impaction within strictures. In addition, the rigid nature and size of current generation of WCE pills is accompanied by 0.1% inability to swallow the pill by patients with normal esophageal motility. Methods The aim of this communication is to describe the initial prototype, P1, which is thinner and slightly longer than the current generation of WCEs. In addition, it exhibits intrinsic active locomotion, produced by vibrating silicon legs. These generate a controlled-skid locomotion on the small bowel mucosal surface, rendered slippery by surface mucus and intraluminal surfactant bile salts. We demonstrate the mechanism responsible for the active locomotion of P1, which we consider translatable into a working prototype, suitable for further R&D for eventual clinical translation. Results The shape and attachment of the rubber vibrating legs to vibrating actuators, have been designed specifically to produce a tight clockwise circular motion. When inserted inside a circular tube in vitro of equivalent diameter to human small intestine, the intrinsic circular clockwise motion of P1 translates into a linear locomotion by the constraints imposed by the surrounding circular walls of SB and rest of the gastrointestinal tract. This design ensures device stability during transit, essential for imaging and targeting lesions encountered during the enteroscopy. We preformed two experiments: (i) transit of P1 through a phantom consisting of a segment of PVC tube placed on a horizontal surface and (ii) transit through a transparent slippery nylon sleeve insufflated with air. In the PVC tube, its transit rate averages 15.6 mm/s, which is too fast for endoscopy: whereas inside the very slippery nylon sleeve insufflated with air, the average transit rate of P1 is reduced to 5.9 mm/s, i.e., ideal for inspection endoscopy. Conclusions These in-vitro experiments indicate that the P1 hybrid soft robot prototype has the potential specifically for clinical translation for SB enteroscopy.

Funder

Wellcome Trust

Publisher

Springer Science and Business Media LLC

Subject

Surgery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3