The physiology of intraoperative error: using electrokardiograms to understand operator performance during robot-assisted surgery simulations

Author:

D’Ambrosia ChristopherORCID,Aronoff-Spencer Eliah,Huang Estella Y.,Goldhaber Nicole H.,Jacobsen Garth R.,Sandler Bryan,Horgan Santiago,Appelbaum Lawrence G.,Christensen Henrik,Broderick Ryan C.

Abstract

Abstract Background No platform for objective, synchronous and on-line evaluation of both intraoperative error and surgeon physiology yet exists. Electrokardiogram (EKG) metrics have been associated with cognitive and affective features that are known to impact surgical performance but have not yet been analyzed in conjunction with real-time error signals using objective, real-time methods. Methods EKGs and operating console point-of-views (POVs) for fifteen general surgery residents and five non-medically trained participants were captured during three simulated robotic-assisted surgery (RAS) procedures. Time and frequency-domain EKG statistics were extracted from recorded EKGs. Intraoperative errors were detected from operating console POV videos. EKG statistics were synchronized with intraoperative error signals. Results Relative to personalized baselines, IBI, SDNN and RMSSD decreased 0.15% (S.E. 3.603e−04; P = 3.25e−05), 3.08% (S.E. 1.603e−03; P < 2e−16) and 1.19% (S.E. 2.631e−03; P = 5.66e−06), respectively, during error. Relative LF RMS power decreased 1.44% (S.E. 2.337e−03; P = 8.38e−10), and relative HF RMS power increased 5.51% (S.E. 1.945e−03; P < 2e−16). Conclusions Use of a novel, on-line biometric and operating room data capture and analysis platform enabled detection of distinct operator physiological changes during intraoperative errors. Monitoring operator EKG metrics during surgery may help improve patient outcomes through real-time assessments of intraoperative surgical proficiency and perceived difficulty as well as inform personalized surgical skills development. Graphical abstract

Funder

Army Research Office

Publisher

Springer Science and Business Media LLC

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3