Classification of subtask types and skill levels in robot-assisted surgery using EEG, eye-tracking, and machine learning

Author:

Shafiei Somayeh B.ORCID,Shadpour SaeedORCID,Mohler James L.,Kauffman Eric C.,Holden Matthew,Gutierrez Camille

Abstract

Abstract Background Objective and standardized evaluation of surgical skills in robot-assisted surgery (RAS) holds critical importance for both surgical education and patient safety. This study introduces machine learning (ML) techniques using features derived from electroencephalogram (EEG) and eye-tracking data to identify surgical subtasks and classify skill levels. Method The efficacy of this approach was assessed using a comprehensive dataset encompassing nine distinct classes, each representing a unique combination of three surgical subtasks executed by surgeons while performing operations on pigs. Four ML models, logistic regression, random forest, gradient boosting, and extreme gradient boosting (XGB) were used for multi-class classification. To develop the models, 20% of data samples were randomly allocated to a test set, with the remaining 80% used for training and validation. Hyperparameters were optimized through grid search, using fivefold stratified cross-validation repeated five times. Model reliability was ensured by performing train-test split over 30 iterations, with average measurements reported. Results The findings revealed that the proposed approach outperformed existing methods for classifying RAS subtasks and skills; the XGB and random forest models yielded high accuracy rates (88.49% and 88.56%, respectively) that were not significantly different (two-sample t-test; P-value = 0.9). Conclusion These results underscore the potential of ML models to augment the objectivity and precision of RAS subtask and skill evaluation. Future research should consider exploring ways to optimize these models, particularly focusing on the classes identified as challenging in this study. Ultimately, this study marks a significant step towards a more refined, objective, and standardized approach to RAS training and competency assessment.

Funder

National Institute of Biomedical Imaging and Bioengineering

National Cancer Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3