A novel method for monitoring abdominal compliance to optimize insufflation pressure during laparoscopy

Author:

Sterke FrankORCID,van Weteringen WillemORCID,Ventura LorenzoORCID,Milesi Ilaria,Wijnen René M. H.ORCID,Vlot JohnORCID,Dellacà Raffaele L.ORCID

Abstract

Abstract Background Abdominal compliance describes the ease of expansion of the abdominal cavity. Several studies highlighted the importance of monitoring abdominal compliance (Cab) during the creation of laparoscopic workspace to individualize the insufflation pressure. The lack of validated clinical monitoring tools for abdominal compliance prevents accurate tailoring of insufflation pressure. Oscillometry, also known as the forced oscillation technique (FOT), is currently used to measure respiratory mechanics and has the potential to be adapted for monitoring abdominal compliance. This study aimed to define, develop and evaluate a novel approach which can monitor abdominal compliance during laparoscopy using endoscopic oscillometry. Materials and methods Endoscopic oscillometry was evaluated in a porcine model for laparoscopy. A custom-built insufflator was developed for applying an oscillatory pressure signal superimposed onto a mean intra-abdominal pressure. This insufflator was used to measure the abdominal compliance at insufflation pressures ranging from 5 to 20 hPa (3.75 to 15 mmHg). The measurements were compared to the static abdominal compliance, which was measured simultaneously with computed tomography imaging. Results Endoscopic oscillometry recordings and CT images were obtained in 10 subjects, resulting in 76 measurement pairs for analysis. The measured dynamic Cab ranged between 0.0216 and 0.261 L/hPa while the static Cab based on the CT imaging ranged between 0.0318 and 0.364 L/hPa. The correlation showed a polynomial relation and the adjusted R-squared was 97.1%. Conclusions Endoscopic oscillometry can be used to monitor changes in abdominal compliance during laparoscopic surgery, which was demonstrated in this study with a comparison with CT imaging in a porcine laparoscopy model. Use of this technology to personalize the insufflation pressure could reduce the risk of applying excessive pressure and limit the drawbacks of insufflation.

Funder

Health~Holland, Top Sector Life Sciences & Health

Merck Sharp and Dohme

Publisher

Springer Science and Business Media LLC

Subject

Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3