Abstract
Abstract
Introduction
Despite the advancements in technology and organized training for surgeons in laparoscopic surgery, the persistent challenge of not being able to feel the resistance and characteristics of the tissue, including pulsations, remains unmet. A recently developed grasper (Optigrip®) with real time haptic feedback, based on photonic technology, aims to address this issue by restoring the tactile sensation for surgeons. The key question is whether pulsations can be detected and at what minimal size level they become clinical significant.
Methods
To simulate arterial conditions during laparoscopic procedures, four different silicone tubes were created, representing the most prevalent arteries. These tubes were connected to a validated pressure system, generating a natural pulse ranging between 80 and 120 mm Hg. One control tube without pressure was added. The surgeons had to grasp these tubes blindly with the conventional grasper or the haptic feedback grasper in a randomized order. They then indicated whether they felt the pressure or not and the percentage of correct answers was calculated.
Results
The haptic grasper successfully detected 96% of all pulsations, while the conventional grasper could only detect 6%. When considering the size of the arteries, the Optigrip® identified pulsations in 100% the 4 and 5 mm arteries and 92% of the smallest arteries. The conventional grasper was only able to feel the smallest arteries in 8%. These differences were highly significant (p < 0.0001).
Conclusion
This study demonstrated that the newly developed haptic feedback grasper enables detection of arterial pulsations during laparoscopy, filling an important absence in tactile perception within laparoscopic surgery.
Publisher
Springer Science and Business Media LLC