Training in robotic-assisted surgery: a systematic review of training modalities and objective and subjective assessment methods

Author:

Rahimi A. MasieORCID,Uluç Ezgi,Hardon Sem F.,Bonjer H. Jaap,van der Peet Donald L.,Daams Freek

Abstract

Abstract Introduction The variety of robotic surgery systems, training modalities, and assessment tools within robotic surgery training is extensive. This systematic review aimed to comprehensively overview different training modalities and assessment methods for teaching and assessing surgical skills in robotic surgery, with a specific focus on comparing objective and subjective assessment methods. Methods A systematic review was conducted following the PRISMA guidelines. The electronic databases Pubmed, EMBASE, and Cochrane were searched from inception until February 1, 2022. Included studies consisted of robotic-assisted surgery training (e.g., box training, virtual reality training, cadaver training and animal tissue training) with an assessment method (objective or subjective), such as assessment forms, virtual reality scores, peer-to-peer feedback or time recording. Results The search identified 1591 studies. After abstract screening and full-texts examination, 209 studies were identified that focused on robotic surgery training and included an assessment tool. The majority of the studies utilized the da Vinci Surgical System, with dry lab training being the most common approach, followed by the da Vinci Surgical Skills Simulator. The most frequently used assessment methods included simulator scoring system (e.g., dVSS score), and assessment forms (e.g., GEARS and OSATS). Conclusion This systematic review provides an overview of training modalities and assessment methods in robotic-assisted surgery. Dry lab training on the da Vinci Surgical System and training on the da Vinci Skills Simulator are the predominant approaches. However, focused training on tissue handling, manipulation, and force interaction is lacking, despite the absence of haptic feedback. Future research should focus on developing universal objective assessment and feedback methods to address these limitations as the field continues to evolve.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3