Interspecific differences in developmental mode determine early cognitive abilities in teleost fish

Author:

Montalbano Giulia,Bertolucci Cristiano,Bisazza Angelo,Lucon-Xiccato Tyrone

Abstract

AbstractMost studies on developmental variation in cognition have suggested that individuals are born with reduced or absent cognitive abilities, and thereafter, cognitive performance increases with age during early development. However, these studies have been mainly performed in altricial species, such as humans, in which offspring are extremely immature at birth. In this work, we tested the hypothesis that species with other developmental modes might show different patterns of cognitive development. To this end, we analysed inhibitory control performance in two teleost species with different developmental modes, the zebrafish Danio rerio and the guppy Poecilia reticulata, exploiting a simple paradigm based on spontaneous behaviour and therefore applicable to subjects of different ages. Zebrafish hatch as larvae 3 days after fertilisation, and have an immature nervous system, a situation that mirrors extreme altriciality. We found that at the early stages of development, zebrafish displayed no evidence of inhibitory control, which only begun to emerge after one month of life. Conversely, guppies, which are born after approximately one month of gestation as fully developed and independent individuals, solved the inhibitory control task since their first days of life, although performance increased with sexual maturation. Our study suggests that the typical progression described during early ontogeny in humans and other species might not be the only developmental trend for animals’ cognition and that a species’ developmental mode might determine variation in cognition across subjects of different age.

Funder

Ministero dell'Università e della Ricerca

Università degli Studi di Ferrara

Publisher

Springer Science and Business Media LLC

Subject

Experimental and Cognitive Psychology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3