Can AI distinguish a bone radiograph from photos of flowers or cars? Evaluation of bone age deep learning model on inappropriate data inputs
Author:
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Link
https://link.springer.com/content/pdf/10.1007/s00256-021-03880-y.pdf
Reference33 articles.
1. Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, et al. Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. 2018;15: e1002686. https://doi.org/10.1371/journal.pmed.1002686.
2. Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284:574–82. https://doi.org/10.1148/radiol.2017162326.
3. Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology. 2017;287: 170236. https://doi.org/10.1148/radiol.2017170236.
4. Yala A, Schuster T, Miles R, Barzilay R, Lehman CA. Deep learning model to triage screening mammograms: a simulation study. Radiology. 2019;293:38–46. https://doi.org/10.1148/radiol.2019182908.
5. Urakawa T, Tanaka Y, Goto S, Matsuzawa H, Watanabe K, Endo N. Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network. Skeletal Radiol. 2018;48:239.
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Performance of two different artificial intelligence (AI) methods for assessing carpal bone age compared to the standard Greulich and Pyle method;La radiologia medica;2024-08-20
2. Evaluating the Robustness of a Deep Learning Bone Age Algorithm to Clinical Image Variation Using Computational Stress Testing;Radiology: Artificial Intelligence;2024-05-01
3. Deep-learning for automated detection of MSU deposits on DECT: evaluating impact on efficiency and reader confidence;Frontiers in Radiology;2024-02-19
4. Validation of an established TW3 artificial intelligence bone age assessment system: a prospective, multicenter, confirmatory study;Quantitative Imaging in Medicine and Surgery;2024-01
5. Applicability and robustness of an artificial intelligence-based assessment for Greulich and Pyle bone age in a German cohort;RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren;2023-12-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3