Abstract
Abstract
Objectives
To evaluate differences in collagen density as detected by dual-energy computed tomography (DECT) of wrist ligaments between patients with calcium pyrophosphate-dihydrate deposition disease (CPPD) and a control group in order to gain insight into changes of the extracellular matrix in response to crystal deposition.
Materials and methods
This retrospective study included 28 patients (18 with CPPD, 10 controls) who underwent DECT of the wrist. Collagen density maps were reconstructed from the DECT datasets and used to measure densities in regions of interest (ROIs) placed in the scapholunate (SL) ligament (dorsal, palmar, proximal), lunotriquetral (LT) ligament, and extensor carpi radialis (ECR) tendon, (n = 260 measurements). The presence of calcifications on standard CT images in these regions was assessed by a blinded reader. Densities were compared with nonparametric tests, and linear regression analysis was performed to investigate the impact of age, sex, and CT- detected calcium deposition on collagen density.
Results
Collagen density in the SL ligament was significantly higher in CPPD patients than in controls (overall mean: 265.4 ± 32.1 HU vs. 196.3 ± 33.8 HU; p < 0.001). In the ECR tendon, collagen densities did not differ significantly (p = 0.672): 161.3 ± 20.1 HU in CPPD vs. 163.6 ± 12.0 HU in controls. Regression analysis showed that diagnosis, but not age or calcification, had a significant impact on collagen density.
Conclusion
Collagen density of the SL ligament is significantly higher in CPPD patients than in control patients. Further research is needed to understand these changes in the extracellular matrix of ligaments in CPPD.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference29 articles.
1. Salaffi F, De Angelis R, Grassi W, Prevalence MP, study IGM. Prevalence of musculoskeletal conditions in an Italian population sample: results of a regional community-based study. I. The MAPPING study. Clin Exp Rheumatol 2005; 23(6):819–828.
2. Felson DT, Anderson JJ, Naimark A, Kannel W, Meenan RF. The prevalence of chondrocalcinosis in the elderly and its association with knee osteoarthritis: the Framingham Study. J Rheumatol 1989; 16(9):1241–1245.
3. Abhishek A, Doherty M. Epidemiology of calcium pyrophosphate crystal arthritis and basic calcium phosphate crystal arthropathy. Rheum Dis Clin N Am. 2014;40(2):177–91.
4. Yang BY, Sartoris DJ, Djukic S, Resnick D, Clopton P. Distribution of calcification in the triangular fibrocartilage region in 181 patients with calcium pyrophosphate dihydrate crystal deposition disease. Radiology. 1995;196(2):547–50.
5. Stäbler A. The pathophysiological etiological mechanism of destructive wrist joint arthropathy in pseudogout. Rofo. 1992;156(1):73–6.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献