Fast high-quality MRI protocol of the lumbar spine with deep learning-based algorithm: an image quality and scanning time comparison with standard protocol

Author:

Zerunian Marta,Pucciarelli Francesco,Caruso Damiano,De Santis Domenico,Polici Michela,Masci Benedetta,Nacci Ilaria,Del Gaudio Antonella,Argento Giuseppe,Redler Andrea,Laghi Andrea

Abstract

Abstract Objective The objective of this study is to prospectively compare quantitative and subjective image quality, scanning time, and diagnostic confidence between a new deep learning-based reconstruction(DLR) algorithm and standard MRI protocol of lumbar spine. Materials and methods Eighty healthy volunteers underwent 1.5T MRI examination of lumbar spine from September 2021 to May 2023. Protocol acquisition comprised sagittal T1- and T2-weighted fast spin echo and short-tau inversion recovery images and axial multislices T2-weighted fast spin echo images. All sequences were acquired with both DLR algorithm and standard protocols. Two radiologists, blinded to the reconstruction technique, performed quantitative and qualitative image quality analysis in consensus reading; diagnostic confidence was also assessed. Quantitative image quality analysis was assessed by calculating signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Qualitative image quality analysis and diagnostic confidence were assessed with a five-point Likert scale. Scanning times were also compared. Results DLR SNR was higher in all sequences (all p<0.001). CNR of the DLR was superior to conventional dataset only for axial and sagittal T2-weighted fast spin echo images (p<0.001). Qualitative analysis showed DLR had higher overall quality in all sequences (all p<0.001), with an inter-rater agreement of 0.83 (0.78–0.86). DLR total protocol scanning time was lower compared to standard protocol (6:26 vs 12:59 min, p<0.001). Diagnostic confidence for DLR algorithm was not inferior to standard protocol. Conclusion DLR applied to 1.5T MRI is a feasible method for lumbar spine imaging providing morphologic sequences with higher image quality and similar diagnostic confidence compared with standard protocol, enabling a remarkable time saving (up to 50%).

Funder

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3