Genetic basis and imaging findings of neurofibromatosis 1 and other somatic overgrowth disorders

Author:

Vittay Orsolya,Christopher Joseph,Mehta Sarju G.,Toms Andoni P.ORCID

Abstract

AbstractSomatic overgrowth disorders comprise a wide range of rare conditions that present with focal enlargement of one or more tissue types. The PI3K-AKT-mTOR pathway is a signalling pathway that induces angiogenesis and cell proliferation, and is one of the most commonly overactivated signalling pathways in cancer. The PI3K-AKT-mTOR pathway can be up-regulated by genetic variants that code for proteins in this pathway, or down-regulated by proteins that inhibit the pathway. Mosaic genetic variations can result in cells that proliferate excessively in specific anatomical locations. The PIK3CA-related overgrowth spectrum (PROS) disorders include CLOVES syndrome, macrodystrophia lipomatosa, and Klippel-Trenaunay syndrome among many. The neurofibromatosis type 1 (NF1) gene encodes neurofibromin which down-regulates the PI3K-AKT-mTOR pathway. Thousands of pathological variants in the NF1 gene have been described which can result in lower-than-normal levels of neurofibromin and therefore up-regulation of the PI3K-AKT-mTOR pathway promoting cellular overgrowth. Somatic overgrowth is a rare presentation in NF1 with a wide range of clinical and radiological presentations. Hypertrophy of all ectodermal and mesodermal elements has been described in NF1 including bone, muscle, fat, nerve, lymphatics, arteries and veins, and skin. The shared signalling pathway for cellular overgrowth means that these radiological appearances can overlap with other conditions in the PIK3CA-related overgrowth spectrum. The aim of this review is to describe the genetic basis for the radiological features of NF1 and in particular compare the appearances of the somatic overgrowth disorders in NF1 with other conditions in the PIK3CA-related overgrowth spectrum.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3