Author:
Saha Chandan,Ghosh Sarit K.,Kumari Pooja,Perla Venkata K.,Singh Harishchandra,Mallick Kaushik
Abstract
AbstractOxygen defect engineering is a reliable and efficient approach to modulate the electronic structure of metal oxides for the improvement of catalytic efficiency. In this work, carbon nitride supported titanium dioxide nanoparticle, with the space group of I41/amd, was prepared using a high temperature synthesis route. Transmission electron microscope study revealed that titanium dioxide particle were dispersed uniformly on the carbon nitride network. The X-ray photoelectron spectroscopy analysis predicted the formation of oxygen defects in the matrix of titanium oxide, and it also indicated the presence of titanium ions with mixed valence states. The synthesized hybrid system was evaluated as an electrocatalyst for the electrochemical detection of epinephrine using cyclic voltammetric and square wave voltammetric techniques. A custom-made device was also fabricated using synthesized hybrid material for the purpose of evaluating the electrochemical sensing of epinephrine in a pharmaceutical sample.
Funder
University of Johannesburg
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献