Abstract
AbstractLanthanum-based perovskites (LaMnxCo1-xO3 (0 ≤ x ≤ 1)) were synthesized using a solution combustion synthesis technique with variable ratios of Co and Mn to investigate the surface property and electrocatalytic characteristics (stability and activity of catalyst) for methanol oxidation reaction (MOR), oxygen reduction reaction (ORR), and oxygen evolution reaction (OER) under alkaline medium (KOH). The structural, chemical, and morphological characterizations of the synthesized catalyst were performed by XRD, FTIR, SEM, TEM, and XPS techniques as a function of the Mn:Co elemental ratio. The time–temperature profile during the combustion process was also monitored to study the completion of the combustion reaction and to understand its impact on the structure of the perovskites. SEM/EDX and XPS analysis confirmed the formation of the targeted ratio of Mn and Co on the catalyst. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) results revealed that all perovskite samples with different Co:Mn ratios were active for ORR, OER, and MOR. The LaMnxCo1-xO3 perovskite with x = 0.4 showed the highest current density compared to the other samples toward all the electrocatalytic reactions under alkaline reaction conditions.
Graphical Abstract
Funder
Qatar National Research Fund
Qatar University
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献