Evaluating the Effect of WO3 on Electrochemical and Corrosion Properties of TiO2-RuO2-Coated Titanium Anodes with Low Content of RuO2

Author:

Kusmierek ElzbietaORCID

Abstract

AbstractThe electrochemical and corrosion characterization of Ti0.97Ru0.03O2/Ti electrodes modified with WO3 was reported. Modification of Ti0.97Ru0.03O2/Ti electrodes with WO3 was previously described as improving the effectiveness of an azo dye degradation in a photoelectrochemical treatment. Thus, the effect of WO3 introduction to oxide film on electrode surface on electrochemical behaviour and stability of the modified electrodes was investigated. Moreover, corrosion behaviour of Ti0.97Ru0.03O2/Ti electrodes modified with WO3 was evaluated with the application of potentiodynamic polarization sweep method and open circuit potential measurement. Electrodes modified with WO3 revealed higher anodic and cathodic peak currents in K4[Fe(CN)6] solution (by 35% for 6%WO3 content) indicating higher electroactive surface area and faster electron transfer reaction. An increase in WO3 amount in the oxide layer caused an increase in the number of active sites determined in Na2SO4 and most of them (more than 80%) were located in the outer and more accessible surface. The investigation of the tested electrodes at high potentials at which oxygen evolution is observed, allowed their classification in the following order showing an increase in their activity towards oxygen evolution reaction: Ti0.97Ru0.03O2/Ti < Ti0.94Ru0.03O2-W0.03O3/Ti < Ti0.91Ru0.03O2-W0.06O3/Ti. Although the electrode modification with WO3 resulted in lower resistance to corrosion in Na2SO4 solution regarding corrosion potential, corrosion current densities were clearly lower in comparison with the non-modified electrode, especially after longer immersion in the solution. ASTs showed that even a small addition of WO3 increased the lifetime of the electrodes. The Ti0.97Ru0.03O2/Ti electrode modification with WO3 seemed to be advantageous for their application in electrochemical and photoelectrochemical degradation of organic pollutants.

Funder

Lodz University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Electrochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3