Author:
Kobayashi Takanori,Nakanishi Hiromi,Takahashi Michiko,Mori Satoshi,Nishizawa Naoko K.
Abstract
Abstract
Iron deficiency is a major cause of reduced crop yields worldwide, particularly in calcareous soils. Unlike barley, rice is highly susceptible to iron deficiency because of a low capacity to secrete mugineic acid family phytosiderophores (MAs), which are iron chelators secreted by graminaceous plants. We present an approach toward the generation along with field trials of transgenic rice lines exhibiting increased tolerance to iron deficiency. Cloning barley genes that encode biosynthetic enzymes for MAs enabled us to produce transgenic rice plants by introducing barley MAs biosynthesis-related genes. We tested three transgenic lines possessing barley genomic fragments responsible for MAs biosynthesis in a paddy field experiment on calcareous soil, which revealed tolerance of these lines to low iron availability. We also applied new approaches to generate iron-deficiency-tolerant rice lines, including the introduction of an engineered ferric-chelate reductase gene and manipulation of transcription factor genes regulating the iron deficiency response.
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Soil Science,Agronomy and Crop Science
Reference74 articles.
1. Akiyama K, Nakamura S, Suzuki T, Wisniewska I, Sasaki N, Kawasaki S. Development of a system of rice transformation with long genome inserts for their functional analysis for positional cloning. Plant Cell Physiol Supplement 1997;38:s94.
2. Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, et al. Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem. 2006;43:32395–402.
3. Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S. Cloning an iron-regulated metal transporter from rice. J Exp Bot 2002;53:1677–82.
4. Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol. 2003;133:1102–10.
5. Curie C, Panavience Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 2001;409:346–9.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献