Increasing formability in hole-flanging through the use of punch rotation based on temperature and strain rate dependent forming limit curves

Author:

Besong Lemopi Isidore,Buhl Johannes,Bambach Markus

Abstract

AbstractConventional hole-flanging by stamping is characterized by low formability. It is common knowledge that formability can be improved by forming at high temperatures. High-speed punch rotation is introduced to conventional hole-flanging to use frictional heat to improve and control formability. Thermomechanical finite element (FE) simulations of conventional hole-flanging and hole-flanging with punch rotation are used to determine the effects of punch rotation on the process temperature. Hot tensile tests were conducted to find the effects of temperature and strain rate on the forming limit of the blank. The Marciniak–Kuczynski (M–K) forming limit model is used to estimate temperature and strain-rate dependent forming limits of the material. Hole flanging experiments were conducted at different punch speeds and feeds to determine process windows that maximize formability. A maximum hole expansion ratio (HER) of 4 was obtained in hole-flanging with punch rotation compared to 1.48 in conventional hole-flanging experiments. In theory, a rise in blank temperature to 400 °C in hole-flanging with punch rotation enhances the HER by 30% based on the FE simulations. However, experiments of hole-flanging with punch rotation reveal a 170% increase in formability. The difference in formability between the experiments and FE simulations is attributed to the influence of high-speed deformation, in-plane shear and non-proportional loading paths. To control formability in hole-flanging with high-speed punch rotation, it seems sufficient to establish a closed-loop control of the process with a pre-defined temperature profile.

Funder

Brandenburgische TU Cottbus-Senftenberg

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3