Investigation of an inverse thermal injection mould design methodology in dependence of the part geometry

Author:

Hopmann C.ORCID,Gerads J.ORCID,Hohlweck T.ORCID

Abstract

AbstractThe production of injection moulded components with low shrinkage and warpage is a constant challenge for manufacturers. The thermal design of the injection mould plays an important role for the achievable quality, especially the placement of the cooling channels. This design is usually based on empirical knowledge of the mould designers. The construction is supported iteratively by injection moulding simulations. In the case of thick-walled plastic optics with big wall thickness jumps, the shrinkage is compensated by injection compression moulding. In this process, the thin-walled areas freeze earlier and the necessary compression pressure introduces stresses into these areas which reduces the optical performance. An adapted cooling channel design can reduce these problems. At the IKV, Institute for Plastics Processing in Industry and Crafts at the RWTH Aachen University, a methodology was developed which inversely calculates the cooling requirement of the moulded part A demand-oriented cooling channel system is derived based on the computed results. The aim of the research projects is to minimise displacement and internal stresses by temperature control of the moulded parts according to the demand. In this paper, the methodology is applied to three different geometries, representing three classical parts for the injection moulding process. Three different quality areas in the mould for the inverse optimisation are defined and investigated. For each geometry the cooling channel designs are then validated in injection moulding simulations based on the results from the thermal optimisation. It can be shown that for different component geometries and thicknesses, different quality areas are advantageous and decrease the maximum warpage of the parts. For thin-walled ribbed components, a 2D approach leads to a 15% smaller displacement, for components with wall thickness jumps, all investigated quality ranges show no differences in displacement, but a surface in the middle of the part is preferred due to a 3 °C lower standard deviation of the temperature distribution.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science

Reference22 articles.

1. Pötsch G, Michaeli W (2008) Injection molding. An introduction. Hanser, Munich

2. Hopmann C, Menges G, Michaeli W, Mohren P (2018) Spritzgießwerkzeuge. Auslegung, Bau, Anwendung. Carl Hanser Verlag, Munich

3. Malloy RA (2011) Plastic part design for injection molding. An introduction. Hanser, Cincinnati, Ohio

4. Frekers V (2019) Improved part properties via virtual DoE. SIGMA Engineering GmbH. https://www.sigmasoft.de/en/press/pressreleases/improved-part-properties-via-virtual-doe/. Accessed 06 March 2020

5. NN (2017) Process Optimization analysis (Concept). https://knowledge.autodesk.com/support/moldflow-insight/learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/MoldflowInsight/files/GUID-5EC36B17-F7B4-4083-8872-E86AA04BA849-htm.html. Accessed 06 March 2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3