From specified product tolerance to acceptable material and process scatter: an inverse robust optimization approach

Author:

Nejadseyfi O.,Geijselaers H. J. M.,Atzema E. H.,Abspoel M.,van den Boogaard A. H.

Abstract

AbstractProduction efficiency in metal forming processes can be improved by implementing robust optimization. In a robust optimization method, the material and process scatter are taken into account to predict and to minimize the product variability around the target mean. For this purpose, the scatter of input parameters are propagated to predict the product variability. Consequently, a design setting is selected at which product variation due to input scatter is minimized. If the minimum product variation is still higher than the specific tolerance, then the input noise must be adjusted accordingly. For example this means that materials with a tighter specification must be ordered, which often results in additional costs. In this article, an inverse robust optimization approach is presented to tailor the variation of material and process noise parameters based on the specified product tolerance. Both robust optimization and tailoring of material and process scatter are performed on the metamodel of an automotive part. Although the robust optimization method facilitates finding a design setting at which the product to product variation is minimized, the tighter product tolerance is only achievable by requiring less scatter of noise parameters. It is shown that the presented inverse approach is able to predict the required adjustment for each noise parameter to obtain the specified product tolerance. Additionally, the developed method can equally be used to relax material specifications and thus obtain the same product tolerance, ultimately resulting in a cheaper process. A strategy for updating the metamodel on a wider (noise) base is presented and implemented to obtain a larger noise scatter while maintaining the same product tolerance.

Funder

Materials innovation institute M2i

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3